"Tailflyer"

In Anlehnung an den Flug vom Greifvogel Milan. Visit www.quantophon.com

Hier wird ein Flugzeug vorgestellt das nur über die beiden getrennt ansteuerbaren Heckruder gesteuert wird.

Dieses Flugzeug ist eine Weiterentwicklung vom Nurflügler "Flying Object". Die technischen Grundlagen sind dieselben, daher in dieser Dokumentation nicht wiederholt.

Idee und Dokumentation von Hans Ulrich Stalder.

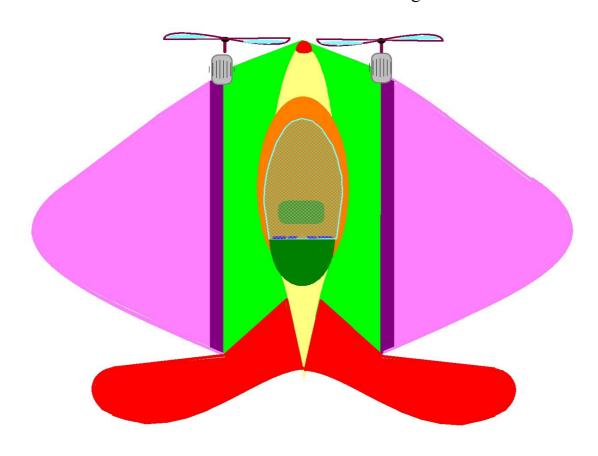
Nachtrag vom September 2025:

Chinesischer Kampfjet der sechsten Generation J-50

Hinweis: Die beweglichen Enden des Lambda-Flügels entspricht meiner Konstruktion mit nur zwei Ruder.

Besonders hervorzuheben sind das voll bewegliche Ende des Lambda-Flügels der J-50 sowie die leistungsstarke Mechanisierung der Hinterkante, die das Problem der Steuerbarkeit des Flugzeugs trotz des Fehlens eines herkömmlichen Hecks mit horizontalen und vertikalen Stabilisatoren sowie Rudern löst.

Quelle und Google-Übersetzung: https://nationalsecurityjournal.org/


* * * * *

1.1.1 Präambel

Dieses Flugzeug kann auf kleinstem Raum zusammengebaut werden. Es hat eine Länge von drei Meter und eine Spannweite von 4,2 Meter (bestehend aus drei Bereichen von 140 Zentimeter Länge).

2.3.2016 Seite 2 von 17

Hier ein bunter Farbvorschlag:

Inhaltsverzeichnis

	1.1.1 Präambel	1
	1.1.2 Haftungsausschluss / Disclaimer	3
	1.1.3 Hyperlinks	3
	1.1.4 Urheberrecht / Copyright	3
	1.1.5 Change-Log	
2.		
3.	Flugzeug-Daten in Übersicht	
	3.1.1 Allgemeine Daten	
	3.1.2 Antriebssystem	
	3.1.3 Bespannung	7
4.		
5.	Steuerung mit mechanischem Mischer	10
	5.1 Übersichtstabelle der Manöver, Steuereingriffe und Auswirkungen	
6.	Heckruderstellungen	
7.	Konstruktionshinweise	15
	7.1 Übersicht	
	7.2 Rohrkonstruktion.	
	7.3 Flügel	
8.	Nachwort von Otto Lilienthal.	16
9.	Ausblick	

1.1.2 Haftungsausschluss / Disclaimer

Für fehlerhafte und korrekte Angaben und deren Folgen kann weder eine juristische Verantwortung noch irgendeine Haftung übernommen werden.

Dieses Flugzeug ist rein theoretischer Natur. Es ist nicht bestätigt, dass dieses Flugzug weder fliegt noch irgendwelchen Sicherheitsnormen entspricht. Dieser Entwurf ist ohne Prüfung Dritter entstanden. Ein Nachbau ist daher verboten, respektive geschieht auf eigene Gefahr. Für allfällige Personen-, Sach- oder sonstige Schäden die im Zusammenhang mit dem hier vorgestellten Flugzeugprojekt entstanden sind oder entstehen könnten, lehne ich jegliche Haftung ab.

1.1.3 Hyperlinks

Ich distanziere mich hiermit ausdrücklich von allen Inhalten aller verlinkten Seiten und mache mir diese Inhalte nicht zu eigen. Diese Erklärung gilt für alle angezeigten externen Links und für alle Inhalte fremder Seiten, zu denen in diesem Dokument sichtbare Banner, Buttons und sonstige Verweise führen.

1.1.4 Urheberrecht / Copyright

Urheberrechtlich geschützt. Alle Rechte vorbehalten. Diese Dokumentation darf kopiert und weitergeleitet werden solange keine kommerziellen Absichten dahinter stehen. Kopieren von Bildern und Text für gewerbliche Zwecke bedarf einer schriftlichen Genehmigung.

Im Zusammenhang mit einem Flugzeug, wo ersichtlich ist, dass dessen Ursprung diesen hat, sind die vorliegenden Flugzeugbezeichnungen urheberrechtlich geschützt. Eine Benutzung derselben ist für Eigenbauer frei, andernfalls bedarf es einer schriftlichen Genehmigung. Bilder, Daten und Dokumente die in diesem Werk mit einer Quellenangabe versehen sind oder offensichtlich ist, dass diese Daten nicht der geistigen Schöpfung des Urhebers von diesem Werk entsprungen sind, sind ebenfalls ausgenommen. In den vorliegend aufgezählten Fällen gelten die Bestimmungen des Ursprungs.

2.3.2016 Seite 4 von 17

1.1.5 Change-Log

Datum	Kapitel/Gebiet	Klassierung	Beschreibung
15.02.16	Steuerung mit Mischer	Neu	Beschreibt die Steuerung mit traditionellem Steuerknüppel und Fusspedalen.
16.02.16	Heckruderform	Änderung	Heckruderform dahingehend geändert, dass der Übergang Rumpf/Ruder unabhängig der Ruderstellungen immer fliessend ist. Zudem die Ruder etwas vergrössert und aus-balanciert. Folgeanpassungen vorgenommen.
20.02.16	Flugzeug- konzept	Umstrukturiert und ergänzt	Kompensierende Massnahmen zum fehlenden Seitenruder hervorgehoben.
22.02.16	RC-Steuerung	Entfernt (separate Doku für das Modell- flugzeug)	Wird zuerst ein Modell gebaut fehlen die Pedalen für die Steuerung. Die RC-Anlage ist kompensierend zu konfigurieren und der "Mischer" ist zu programmieren.

2.3.2016 Seite 5 von 17

2. Flugzeugkonzept

- Einfache Konstruktion mit nur zwei Ruder
- Sehr einfache Steuermechanik; könnte sogar mit zwei unabhängigen Hebel, analog Raupenfahrzeuge gelenkt werden, komfortabler allerdings mit einem Steuerknüppel, den Fusspedalen und einem Mischer (traditionell also)
- Trimming rechts/links über die Anpassung der Motorenleistung
- Die Fusspedalen werden zusätzlich für die Bodensteuerung und das Bremsen benutzt
- Integrierter Rumpf in die Profilstruktur
- Kleinstmögliche Spannweite (dadurch weniger Widerstand an der Flügelnase)
- Rumpfform oben Beluga-ähnlich, unten Pinguin-Form resultiert in wenig Widerstand (Laminarprofil)
- Resultierender invertierter Doppelknickflügel durch Profilstrak mit Auftriebsprofil ausserhalb der Mitte vom Flügel (ermöglicht eine Oberflächenrinne zu gestalten)
- Flügelverwindung (verstärkt die Bildung der Flügel-Oberflächenrinne)
- Front Fans (erzeugen erhöhten Bernoulli-Effekt in der Flügel-Oberflächenrinne)
- Alle Ruder, inkl. Flap, Trimming und Spreizbremsung sind in den beiden Heckflügel integriert (daher kein zusätzlicher Widerstand)
- Oratex-Folie-Bespannung (Oracover), daher wenig Gewicht
- Kurze Landestrecke, da analog dem "Fieseler Storch" gelandet werden kann
- · Kein separates Quer-Ruder, daher kein zusätzlicher Luftwiderstand
- · Kein separates Höhen-Ruder, daher kein zusätzlicher Luftwiderstand
- Kein Seitenruder, daher kein Widerstand von diesem (denn, auch ein Seitenruder generiert zusätzlich induzierten Widerstand) und "Man fliegt dauernd ein Seitenruder spazieren, das man meistens gar nicht braucht" ¹; kompensierende Massnahmen zum fehlenden Seitenruder sind:
 - Ausgeprägte gepfeilte Flügelform bis hinter den Schwerpunkt
 - Mehrfacher Flügelstrak (aerodynamische Schränkung = unterschiedliche Flügelprofile), verursachen geringen Widerstand hinter dem Schwerpunkt
 - Flügelverwindung (die Horten-Brüder trieben dies auf die Spitze und verwanden die Flügel bis über 15° (verursachte allerdings grossen Widerstand)
 - S-schlag Profile (ausgeprägt an der Rumpfunterseite, was beim Einleiten zum Sinkflug ein nach hinten Wandern vom Druckpunkt verhindert)
 - Ausgeprägte, etwas abgeflachte hintere Pinguin-Form erwirkt die Längsstabilität beim Geradeausflug
 - Der Flügelstrak ermöglicht eine resultierende V-Flügelform (wirkt dem Rollen vom Flugzeug entgegen, verhindert dadurch Seitenwind-Angriffsfläche
 - Jede Steuerbewegung drückt das Flugzeug (zuerst) zusätzlich in den Fahrtwind
 - Die schräg verlaufende Drehmoment-Achse durch den vertikalen Schwerpunkt, von den Ruder bis zu den Antriebsmotoren, stabilisiert Seitenwind-Einflüsse

2.3.2016 Seite 6 von 17

Ref. "Schwanzlose Flugzeuge: Ihre Auslegung und ihre Eigenschaften " von Karl Nickel und Michael Wohlfahrt

3. Flugzeug-Daten in Übersicht

Die nachfolgenden Daten wurden mit unterschiedlichen Programmen ermittelt, nämlich mit Nurfluegel, WinLaengs4, Profile2008, EntexPro-108 und SPlan7.0. Dabei mussten zur effektiven Formgebung erhebliche Vereinfachungen vorgenommen werden. In der Folge sind bei den errechneten Grössen Abweichungen zu den Ausgangsdaten möglich. Einige Ergebnisse wurden auf Grund von Vergleichsdaten zusätzlich noch angepasst.

3.1.1 Allgemeine Daten

Flugzeugname "Tailflyer"

Flugzeugtyp Tailflyer < neuer Flugzeugtyp >

Flugzeug-Klasse Experimental

Steuerung aerodynamisch, mit je einer An-

steuerung pro Heckruder

Kabine Plexiglas

Besatzung

Sitz-Position bei 80 kg Pilot-Gewicht 120 bis 130 cm

(eine grössere Abweichung vom Pilot-Gewicht erfordert eine Neuberechnung

Schwerpunkt-Lage ab Rumpfspitze 4% Stab. 90 cm +/- 10 cm (berechnungsabh.) MTOW 200 kg (gerechnete Ausgangslage)

Leermasse 90 kg (leerer Tank)

Bodensteuerung Schwenkrad vorn, Pedalsteuerung

Rumpflänge 2,6 m (3,1 m flugbereit)

Sitzhöhe über Boden 0,4 m
Standhöhe 1,1 m
Rumpfbreite mit demontierten Aussenflügel 1,4 m

Aussenflügel (ohne Einsteckrohre) 1,4 m Spannweite 4,2 m

Flügelfläche 7,5 m² (6,11 m² ohne Ruder)

Streckung 2,8 (bei 6,8 m² Fläche gerechnet)

Heckruder (total zwei Ruder)
< Heckruder-Fläche-vor-Drehachse
> Heckruder-Fläche-hinter-Drehachse
Heckruderspannweite
Flächenbelastung

1,4 m²
0,34 m²
0,36 m²
2,75 m
Flächenbelastung

Räder / Federungen10 cm und Sitzfederung 5 cmRäder (Handbremse vorn)Ausfahrbar bei Landung 15 cm

Sicherheitssystem Rettungsfallschirm am Flugzeug

2.3.2016 Seite 7 von 17

3.1.2 Antriebssystem

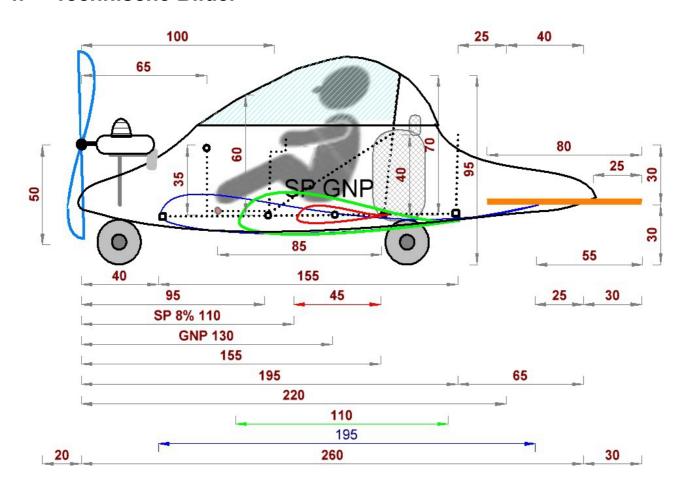
Hirth Benzinmotoren 2 x 20 kW (2 x 28 PS); Tank 30 lt (elektrischer Antrieb in Aussicht gestellt, mit gleichbleibendem Gewicht der Akkus anstelle vom Benzintank).

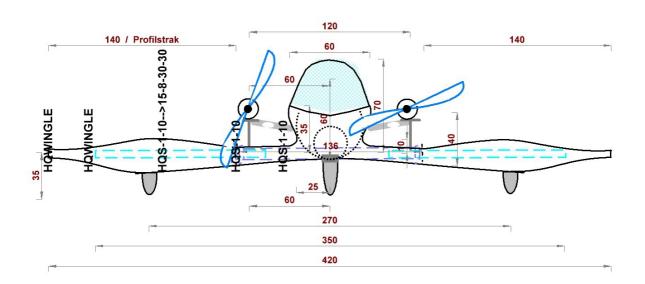
2 x 3 Blatt Helix-Propeller

Hinweis: Es empfiehlt sich den Drehsinn (der Propeller) so zu wählen, dass die dem Rumpf zugewandten Blätter abwärts laufen. So verbleibt bei einem Ausfall immer ein Triebwerk, das mit verringertem Hebelarm arbeitet.

Quelle https://de.wikipedia.org/wiki/P-Faktor

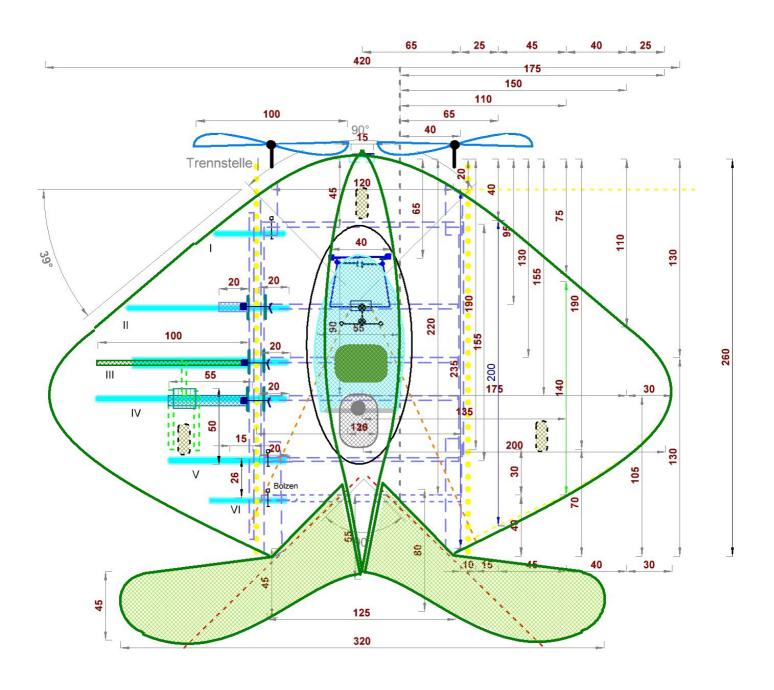
3.1.3 Bespannung


ORATEX UL 600


Zu den folgenden Punkten können (noch) keine Angaben gemacht werden:

Abhebegeschwindigkeit	km/h
Sichere Take-off Geschwindigkeit	km/h
Zulässige Höchstgeschwindigkeit	km/h
Reisegeschwindigkeit	km/h
Bestes gleiten	km/h
Geringstes sinken	km/h
Abrissgeschwindigkeit (Stall)	km/h (Abhebegeschw. / 1,3)
Maximale Reichweite	km
Steigwinkel	0
Startrollstrecke Betonpiste	m
Startrollstrecke über ein 50 ft Hindernis	m

2.3.2016 Seite 8 von 17


4. Technische Bilder

Der Profilstrak wurde mit Programm "Profile 2008" konstruiert.

2.3.2016 Seite 9 von 17

2.3.2016 Seite 10 von 17

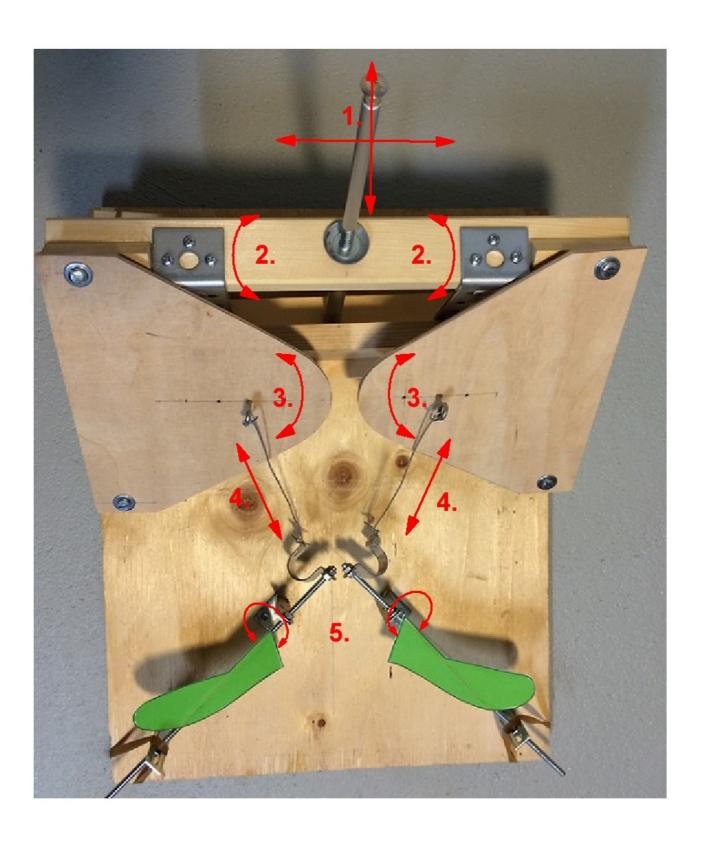
5. Steuerung mit mechanischem Mischer

Was die Steuereinrichtungen betrifft, wird dieses Flugzeug "normal" gesteuert. In einem Punkt aber unterscheidet sich die Steuerung, nämlich, dass die Ausübung der Steuerbewegungen (eher) nacheinander erfolgen. Dies aufgrund meiner Beobachtung vom Greifvogel Milan und dem nachfolgend vorgeschlagenem Mischer-Mechanismus.

Grundsätzlich wird das Flugzeug im Geradeausflug nur mit den Pedalen stabilisiert, das heisst, die Hände sind frei.

Da sämtliche Kräfte, von den Heckruder her kommend, auch den Steuerknüppel tangieren, wird dieser wenn nicht benutzt, in der Mittelstellung fixiert. Erst wenn seitlichen Druck auf den Steuerknüppel ausgeübt wird, wird die Blockierung gelöst, oder aber auch, wenn der Knüppelgriff nach unten gedrückt wird (so wird vermieden, dass der Steuerknüppel einrastet wenn über die Mittelposition gefahren wird).

Das Hebelarmverhältnis zwischen Pedalen und Steuerknüppel ist so, dass nur ein Bruchteil der Kräfte, von den Ruder herkommend, auf den Steuerknüppel geführt wird. Das heisst, dass primär die starken Beine die Steuerung übernehmen. Zusätzlich kann sich ein sensibles Spüren der auf die Ruder einwirkenden Kräfte entwickeln.

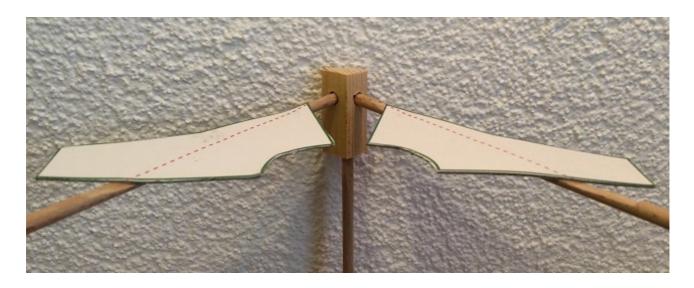

Der folgende Versuchsaufbau vom Mischer bezweckte die theoretischen Überlegungen zur Steuerung zu bestätigen (die Konstruktion selbst muss nicht zwingend Eingang in die Lehrbücher höherer Ingenieurskunst finden).

Erklärung zum folgenden Mischerbild:

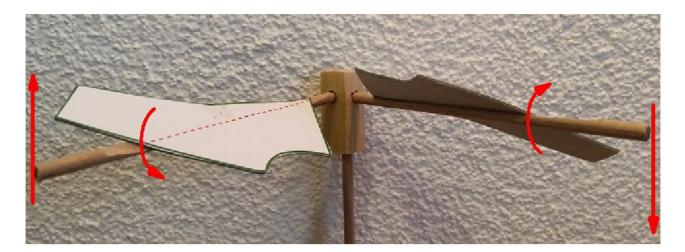
- 1. Steuerknüppel (vorn, hinten und seitliches Schwenken ist möglich)
- 2. Drehbewegung von den Pedalen her kommend (das ganze System bis und mit Punkt 3 wird gedreht)
- 3. Auf-/Ab-Drehbewegung auf Grund der seitlichen Steuerknüppelbewegung (die beiden "Dreiecksplatten" liegen mit zirka 45° Neigung auf dem Drehsystem und sind unten gelagert mit dem Drehsystem fest verbunden)
- 4. Die resultierende Gesamtbewegung wird auf die Ruderachsenschenkel übertragen (diese befinden sich im Geradeausflug schräg unterhalb der Achse)
- 5. Resultierende Heckruderbewegung (voneinander unabhängige Drehung der beiden Ruder)

Die resultierende Drehung der Ruderachse, ob Linksdrehung oder Rechtsdrehung, von waagrecht gestellten Ruder ausgehend, hängt stark von der Konstruktionskonfiguration ab, wie "Dreieckshöhe", Ruderachsenschenkel-Position und -Länge, etc.

2.3.2016 Seite 11 von 17

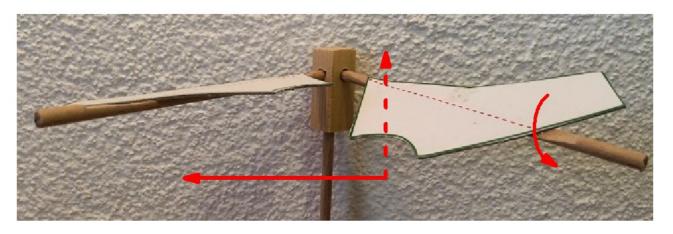

2.3.2016 Seite 12 von 17

5.1 Übersichtstabelle der Manöver, Steuereingriffe und Auswirkungen

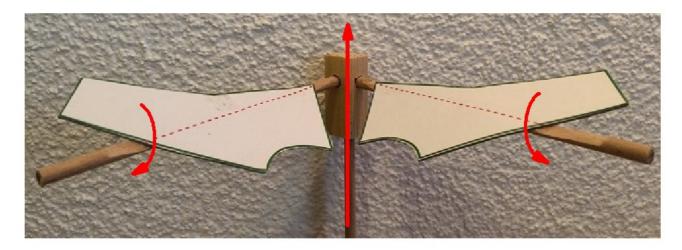

Manöver	Pedal	Steuerhorn	Linke Ruderachse	Rechte Ruderachse	
Geradeausflug	Mittelstellung	Mittelstellung	0° (waagrecht)	0° (waagrecht)	
Rechtskurve (rollen rechts) +	Links gedrückt	Mittelstellung	<50° Rechtsdrehung	<50° Rechtsdrehung	
Ausgleich Gier- Moment	Rechts gedrückt	Linke Position	0° (waagrecht)	<50° Linksdrehung	
Linkskurve (rollen links) +	Rechts gedrückt	Mittelstellung	<50° Linksdrehung	<50° Linksdrehung	
Ausgleich Gier- Moment	Links gedrückt	Rechte Position	Rechtsdrehung <50°	0° (waagrecht)	
Sinken	Mittelstellung	Vorn-Position	<50° Rechtsdrehung	<50° Linksdrehung	
Steigen	Mittelstellung	Hinten-Position	<50° Linksdrehung	<50° Rechtsdrehung	
	1		1		
Spreizbremsung	Mittelstellung (+ beide Räder gebremst)	Vorn-Position (am Anschlag)	90° Rechtsdrehung	90° Linksdrehung	
Bodenkurve rechts - Anti-Schleuder	Links gedrückt (+ rechts gebremst)	Rechte Position Mittelstellung Linke Position Vorn-Position	 0° (waagrecht) 50° Rechtsdre. 50° Rechtsdre. 6° (magazina) 	 0° (waagrecht) 50° Rechtsdre. 50° Rechtsdre. 0° (waagrecht) 	
- Kurvenunterst.	D 1	Hinten-Position	0° (waagrecht)	>50° Rechtsdre.	
Bodenkurve links	Rechts gedrückt (+ links gebremst)	Linke Position Mittelstellung Rechte Position	0° (waagrecht) <50° Linksdre. >50° Linksdre.	0° (waagrecht) <50° Linksdre. >50° Linksdre.	
Anti-SchleuderKurvenunterst.		Vorn-Position Hinten-Position	0° (waagrecht) >50° Linksdre.	>50° Linksdre. 0° (waagrecht)	

2.3.2016 Seite 13 von 17

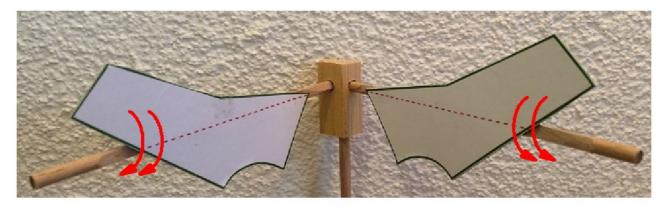
6. Heckruderstellungen



Geradeausflug - beide Ruder sind waagrecht gestellt.



Rechtskurve einleiten – die Ruder sind gegeneinander verdreht.


2.3.2016 Seite 14 von 17

Gieren ausgleichen nach Einleitung der Rechtskurve – das linke Ruder ist (theoretisch) waagrecht gestellt und das rechte abgedreht.

Sinkflug einleiten – beide Ruder werden abgedreht, das Heck wird angehoben.

Spreizbremsung – beide Ruder stehen senkrecht zur Fahrtrichtung.

2.3.2016 Seite 15 von 17

7. Konstruktionshinweise

7.1 Übersicht

Das ganze Flugzeug besteht aus fünf Einzelteilen, das resultiert in fünf ORATEX Bespannungs-Einheiten:

- Rumpf mit beidseitigem Flügelabschnitt
- Zwei Flügelflächen
- Zwei Heckruderflächen

7.2 Rohrkonstruktion

Die Flügel, die Ruder sowie die Rumpfvorder- und Hinterseite haben umlaufende Alu-Rohre, an die die ORATEX Folie angebracht wird.

Das ganze Flugzeug wird aus verschweissten Alu-Rohren hergestellt.

Der Rumpfboden ist eine Plattform, bestehend aus den Verbindungsrohren für die Flügel, der Motor- und Ruder-Halterungen sowie der Kabine-Aufbaute mit den Steuerelementen. Die Unterseite der Bodenplattform hat zusätzliche, formgebende Alu-Rundrohre.

Am Rumpf selbst sind noch vier Flügelrippen, wobei die äusserste Rippe dasselbe Profil hat wie die Anfangs-Rippe vom Flügel.

Die beiden Heck-Ruder haben keine Profil-Wölbung. Die ORATEX Folie läuft daher im Abstand vom Alu-Rohr-Durchmesser parallel zueinander.

7.3 Flügel

Jeder Flügel hat 12 Rippen mit unterschiedlichem Profil (gemäss Flügel-Strak). Die ORATEX Folie wird direkt auf die Alu-Rohre geklebt, respektive umwickelt. Speziell an diesen Flügel ist, dass das grösste Auftriebsprofil nicht am Rumpf anliegt, sondern in der Mitte vom Flügelteil (und dort auch der Räder-Mechanismus untergebracht ist).

2.3.2016 Seite 16 von 17

8. Nachwort von Otto Lilienthal

Somit übergebe ich denn dieses Werk der Öffentlichkeit und bitte, bei der Beurteilung die hier erwähnten Gesichtspunkte freundlichst zu berücksichtigen.

9. Ausblick

"Glücklich ist, wer mehr Träume hat als die Wirklichkeit zerstören kann." (Ursprung unbekannt – wurde immer wieder kopiert)

Desto trotz soll zuerst ein Modellflugzeug gebaut werden.

* * * *

* * *

* *

*

2.3.2016 Seite 17 von 17